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S.1 Self restriction in single cells and growing populations

In this section, we provide a more detailed description of self-restriction in single cells
and demonstrate how a Markovian growth model for the population follows naturally
under some mild assumptions.

Let NS be the number of restriction sites on the DNA (i.e. the number of binding sites
for R and M). Each of these sites can either be unmethylated (can be restricted or
methylated), hemimethylated (can be further methylated), or double methylated (can
be neither restricted nor methylated). In the following, we will denote the number of un-
methylated, hemimethylated, and double methylated sites by S0, S1 and S2, respectively.
Assuming a well mixed reaction network and that it is equally likely that a molecule
of M methylates an unmethylated or a hemimethylated site, it follows that the rates
of restriction and methylation events are proportional to the number of available sites.
Furthermore, we assume that no DNA-repair takes place and that any restriction event
is lethal for the cell. With these mechanisms, the underlying stochastic process would
be a finite state Markov chain with two absorbing states (all restriction sites double
methylated or cell death) and more or less equivalent to the model that was used in [1]
for calculating the probability of phage escape. However, in a growing cell population
the DNA is continuously replicated with a speed that depends on the growth rate of the
population and newly synthesized DNA is unmethylated. Given the double stranded
nature of DNA and the mechanism of replication, when a double methylated restriction
site gets replicated it will split into two hemimethylated sites, a hemimethylated site will
split into a hemimethylated and an unmethylated site, and an unmethylated site will
split into two unmethylated sites. This will double the total number of sites over the cell
cycle. When the cell divides, daughter and mother will each receive NS of the 2NS sites.
In order to not have to explicitly incorporate the cell cycle into the model, we average
this over the cell cycle and assume that when a site splits into two sites in replication,
with equal probability one of the new sites is kept by the cell whereas the other site is
reserved for a future daughter cell and cannot cause self-restriction in the mother. This
means that from the perspective of the mother cell, replication of a double methylated
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site converts the site into a hemimethylated site, a hemimethylated site gets converted
to an unmethylated site with probability 1/2 or stays hemimethylated with probability
1/2, and an unmethylated site stays unmethylated. Ignoring events that do not change
the state of the system, we obtain the following model:

S2
λ−−−−−⇀↽−−−−−
m

S1

1
2
λ

−−−−−−⇀↽−−−−−−
m

S0
r−−−−−→ D, (1)

where D stands for a single absorbing death state that stops the entire process. This
stochastic process is a finite state Markov chain with N3

S + 1 states. Using the conser-
vation law S0 + S1 + S2 = NS, the number of states that are actually needed to fully
describe the chain is ((NS +1)2 +NS +1)/2+1, which means that the underlying master
equation is a linear system of ((NS + 1)2 + NS + 1)/2 + 1 ordinary differential equa-
tions. Unfortunately, the total number of sites NS typically ranges somewhere between
500 − 1000, which means that determining the solution of the master equation would
require us to compute the matrix exponential of a matrix whose size tends to be in the
hundreds of thousands, which is difficult even if we only require a numerical solution.
For a single site, however, we can set NS = 1 and it is straightforward to calculate
with this model whose master equation is then given by the simple system of ordinary
differential equations

∂

∂t
p(t) = Ap(t), where A =


0 r 0 0
0 −(r +m) λ/2 0
0 m −(m+ λ/2) λ
0 0 m −λ

 , (2)

and p(t) := [pD(t) p0(t) p1(t) p2(t)]
> with pD(t) := P (D(t) = 1) and p0(t), p1(t) and

p2(t) as the probabilities for the site to be unmethylated, hemimethylated, or double
methylated. Waiting times until self-restriction, such as displayed in Figure 2 in the
main paper, can be readily derived from this equation using standard theory for finite
state Markov chains [2].

In general, it becomes more difficult to obtain similar results when NS is large, but we can
make use of the fact that conditional on the chain not having reached the death state
D the reaction network is a monomolecular reaction network whose master equation
admits an analytical solution [3], which is a consequence of the implicit assumption that
all restriction sites are equivalent and independent. With this in mind, and denoting
by S(t) = [S0(t) S1(t) S2(t)] the unconditional chain, we can define the process X(t) =
S(t) | {D(t) = 0} and easily deduce that for all times t its distribution is a multinomial
distribution

P (X(t) = [x0 x1 x2]) =
NS!

x0!x1!x2!
pc,0(t)

x0pc,1(t)
x1pc,2(t)

x2 , (3)

where pc,0(t), pc,1(t) and pc,2(t) are the probabilities for a single site to be unmethy-
lated, hemimethylated, or double methylated conditional on it not having been cut,
respectively.
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This allows us to analytically calculate with the full single cell model conditional on
restriction not having happened in the cell, which turns out to be convenient for un-
derstanding self-restriction in growing populations where cells that cut themselves are
removed from the population such that the internal methylation configurations of the
still alive cells are determined by these conditional methylation-replication dynamics.
Assuming that the dynamics in all cells are equilibrated, we can deduce that the in-
ternal methylation configuration of any randomly chosen cell at any time in a growing
population follows the stationary distribution of X(t), also known as the quasi stationary
distribution of the unconditional absorbing Markov chain S(t).
To obtain this quasi stationary distribution, and also the waiting time until self-restriction
of cells in growing populations, we require the quasi stationary probabilities pQ,0, pQ,1, pQ,2
for single sites. Writing the matrix A from Eq.(2) as

A =

[
0 c1
0 C

]
where c1 = [r 0 0] and C =

 −(r +m) λ/2 0
m −(m+ λ/2) λ
0 m −λ

 ,
we can obtain the quasi stationary distribution pQSD = [pQ,0 pQ,1 pQ,2]

> as the normal-
ized right eigenvector of the transpose C′ of C corresponding to the largest eigenvalue
[4], i.e. as the solution of

C′pQSD = γ1pQSD, s.t. pQ,0 + pQ,1 + pQ,2 = 1

where γ1 is the largest eigenvalues of C. Due to the properties of C, γ1 is unique and
guaranteed to be real and strictly negative if all reaction rates are positive λ, r,m > 0
(follows from the Perron-Frobenius theorem).

From a linear systems theory perspective the quasi stationary distribution can be un-
derstood as the distribution that equilibrates the system in all directions except the one
leading into the absorbing state. A consequence is that if we use pQSD (and pD(0) = 0)
as initial condition for the single site model, the solution of the master equation in

Eq.(2) will evolve along a line in four dimensional space given by
[
1 − p>Q

]>
towards

the steady state given by [1 0 0 0]> which corresponds to probability one of the site
being cut. These one-dimensional linear dynamics are the reason why the distribution
of the waiting time τ for a single site to be cut has only one phase and reduces to
an exponential distribution τ ∼ Exp(−γ1) as stated in the main paper. The waiting
time τS until self-restriction of the cell is then obtained as the minimum of i.i.d. ex-
ponentially distributed random variables and is therefore also exponentially distributed
τS ∼ Exp(−γ1NS). The result that this waiting time follows an exponential distribu-
tion implies that growth of a self-restricting population can be modeled as a Markovian
birth-death process, and that it makes sense to reason about a rate of self-restriction
µ(r,m, λ) of a growing population.
In the main paper, we claimed that the self-restriction rate µ(r,m, λ) converges to zero
as the enzyme activities converge to infinity, i.e. that limr,m 7→∞ (µ(r,m, λ)) = 0. It is
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Fig A: Effective population growth rate as a function of the base growth rate λ for
NS = 599 restriction sites and fixed enzyme activities m = 77.02/min and r =
624.10/min.

important to realize that for this to be true it is necessary but not sufficient that the
probability that unmethylated restriction sites are ever available converges to zero. To
validate this result, one needs to study the largest eigenvalue γ1 = γ1(r,m, λ) of C as
a function of r and m and take the limit of infinite enzyme activities. We tested this
numerically by calculating γ1(r,m, λ) for growing values of r and m and found that
γ1(r,m, λ), and hence µ(r,m, λ), indeed converges to zero as r and m become large.
Interestingly, this result would not hold if also hemi-methylated restriction sites could
be recognized by the restriction endonuclease. This can be seen by adding a restriction
reaction for hemi-methylated sites to the model, and verifying that the largest eigenvalue
of the corresponding matrix C does not converge to zero as r and m converge to infinity,
despite the fact that the probability that hemi- or unmethylated restriction sites are
ever available converges to zero. We conclude that bacteria can only prevent both self-
restriction and phage escape at the same time because two subsequent demethylation
steps need to take place to create susceptible sites, while any mechanism in which sites
would become susceptible in a single step would retain a non-zero rate of self-restriction
µ(r,m, λ) for large enzyme activities.
Finally, to supplement the analysis in Figure 3c of the main paper, we investigated
numerically how the effective growth rate λe(r,m, λ) = λ−µ(r,m, λ) growth as a function
of λ for a practically realistic scenario with NS = 599 restriction sites and different fixed
enzyme activities. The results (Figure A displays the case m = 77.02/min and r =
624.10/min) suggest that there always exists a value of λ at which the self-restriction rate
µ(r,m, λ) starts to grow superlinearly in λ, which implies that increasing λ further only
decreases the effective growth rate of the population and that λe(r,m, λ) will eventually
drop to zero as λ increases (albeit this only happens for values of λ that are unrealistically
large and not practically achievable for bacteria).
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S.2 Stochastic simulation of self-restriction in growing
populations

To verify the analytical results, as well as to evaluate the assumptions made in the
main paper, we implemented a stochastic simulation algorithm for a growing population
that implements our model of self-restriction and explicitly simulates every methylation,
demethylation and restriction event in every cell. Growth of the population is represented
as a stochastic birth process, i.e. the waiting time for a birth event in a population of size
N is exponentially distributed Exp(λN). When a new cell is born, its initial methyla-
tion distribution is drawn from a multinomial distribution (see Eq.(3)) parametrized by
the single site probabilities pnew = [pnew,0 pnew,1 pnew,2]

> with pnew,0, pnew,1 and pnew,2
as the probabilities for a single site to be unmethylated, hemi-methylated, or double
methylated in the newly born cell. When a self-restriction event happens in any cell of
the population, this cell is removed from the simulation.
Choosing pnew as the quasi-stationary distribution (QSD) pQSD derived in the previous
section corresponds to the assumptions made in the main paper and leads to perfect
agreement between expected population sizes in the simulation and the analytical growth
model in Eq.[3] in the main paper if the methylation patterns of all cells that are initially
present in the population also follow the QSD (Figure B, panel A, black and blue). If the
methylation patterns of the cells that are initially present do not follow the QSD (e.g. if
all sites are fully methylated) but pnew is chosen as the QSD, the methylation distribution
of sites in the full population (including the initial cells) converges to the QSD (Figure
B, panel B). In this case, since the methylation distribution of sites changes over time,
so does the frequency of self-restriction events, implying that the mean population size
does not follow a simple exponential (Figure B, panel A, green), but starts to resemble
an exponential once convergence to the QSD is achieved. Setting pnew = pQSD is the
only possibility that leads to a homogeneous population in which all cells follow the same
methylation distribution at all times independently of their age. For any other choice of
pnew (e.g. all new cells start fully methylated), the population methylation distribution
converges to a distribution different from pnew, even if all cells that are initially present
also follow pnew (Figure B, red growth curves).
If the RM -system is such that the number of restriction sites that it recognizes is rel-
atively large, for instance NS = 599, while at the same time phage escape probability
needs to be kept low, then according to our model it is necessary that also the enzyme
activities are relatively large, for instance m = 77.02/min and r = 624.10/min for a
growth rate λ = 0.017. Smaller values of r and/or m would imply either large self-
restriction rates or phage escape probabilities (or both) since they would not allow to
obtain a small number of cutting events at any of the NS = 599 bacterial restriction
sites while ensuring at the same time that one of the typically small (e.g. NV = 5)
number of restriction sites on the phage is reliably cut. Since the value of m is much
larger than the growth rate λ = 0.017/min, which determines the demethylation rate
of restriction sites, the QSD corresponding to these values of r and m is such that the
probability for sites to be fully methylated is close to one while the probability for sites
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Fig B: Stochastic simulation of population growth. (A) Comparison of differ-
ent growth curves. Cyan: exponential growth without self-restriction at rate λ.
Black (matching with blue): exponential growth with self-restriction according
to the analytical results in the main paper, i.e. at rate λ − µ(r,m, λ). Blue:
expected population size in the stochastic growth simulation with pnew = pQSD

and initial cells following pQSD. Green: expected population size in the stochastic
growth simulation with pnew = pQSD and initial cells fully methylated. Red: ex-

pected population size in the stochastic growth simulation with pnew = [0 0 1]>

and initial initial cells also following pnew = [0 0 1]>. (B) Convergence of the
population methylation distribution. Dashed blue lines: probabilities of find-
ing restriction sites in the different configurations according to the QSD and
in the growth simulation corresponding to the blue curve in A. Green col-
ors: probability of finding restriction sites in the different configurations in the
growth simulation corresponding the green curve in A. Red colors: probability
of finding restriction sites in the different configurations in the growth simula-
tion corresponding to the red curve in A. For all results of this figure we, chose
λ = 0.017/min, NS = 599,m = 0.025/min, r = 5 · 10−5/min, an intial population
with 40 cells and performed n = 200 repetitions of each growth simulation to
calculated expected population sizes.
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to be empty is extremely low (in the order of 10−9). Self-restriction happens nevertheless
due to the large number of restriction sites as well as the large restriction rates which
leads to essentially direct cutting in the (rare) cases when sites become unmethylated.
A consequence of this is that the assumption that the methylation distribution of newly
born cells follows the QSD is similar to assuming that new cells are initially fully methy-
lated for these parameters. From a biological perspective it is unclear how accurate this
assumption is since the precise dynamics of the real methylation-replication process are
only poorly understood. Within our stochastic simulation, it is possible to test what
consequences different assumptions about the methylation distribution of newly born
cells have for growth of the population. For instance, instead of representing the repli-
cation of sites as demethylation events, we can explicitly carry out all replication events
at division events of cells. This corresponds to assuming that demethylated sites are not
generated continuously as in our model in the main paper, but can only be produced in
bursts at cell division events and revert back to being fully methylated when the cells
are not dividing. Under this assumption, the methylation pattern of cells depends on
when the cell has divided for the last time and growing populations will never be homo-
geneous. Furthermore, the assumption that all restriction sites in a cell are replicated
in a single event leads to loss of independence of individual sites, which, for the purpose
of a simulation of this model, implies that choosing consistent methylation patterns for
the cells that are present at time zero is a non-trivial problem and cannot be done by
assuming some distribution for an individual site (e.g. pQSD) and simply drawing all
sites of all cells according to this distribution. Therefore, to obtain statistics for the
initial cells that are consistent with the population dynamics, we first run a simulation
with arbitrary initial methylation patterns for a time horizon that is sufficiently large to
guarantee convergence of all population statistics. We then extract some cells (N0 = 40
in plots) from the final population and use them as initial cells for a second simulation.
The results (Figure C, panel A) show that this model can lead either to more or to less
restriction events depending on the activities r and m of the enzymes. For the discussed
parameters λ = 0.017, NS = 599,m = 77.02/min and r = 624.10/min, for which the
rate of methylation is more than three orders of magnitude larger than the growth rate,
in most cases all restriction sites are re-methylated after division before the cell divides
again and the population self-restriction rate is very small (Figure C, panel B).

S.3 Fluctuations in enzyme levels

In the main paper, we assumed that the enzyme activities m and r are the same in all
cells. In practice, it may be hard and costly for cells to always keep m and r constant.
In this section, we supplement the results of the main paper by investigating the con-
sequences of fluctuations in enzyme activities. In particular, we study how populations
grow if different cells have different enzyme activities. For now, let us assume that

(i) The values of r and m vary between cells but remain approximately constant within
each cell over its entire lifetime.
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Fig C: Stochastic simulation of population growth under different model as-
sumptions. (A) Comparison of expected population sizes (obtained by av-
eraging over n = 100 simulation runs) in the two models for parameters
N0 = 40, λ = 0.017/min, NS = 599,m = 0.25/min and r = 0.05/min (red),
r = 0.005/min (green), r = 0.0005/min (blue), and r = 0 (cyan, growth
without self-resriction). Solid lines: population growth with splitting of sites
at cell division. Dashed lines: population growth according to the model of
the main paper. (B) Comparison of expected population sizes (obtained by
averaging over n = 100 simulation runs) in the two models for parameters:
N0 = 40, λ = 0.017/min, NS = 599,m = 77.02/min and r = 624.1/min.
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(ii) The values of r and m in a newly born daughter cell are drawn independently from
the values of its mother cell according to a fixed distribution pR,M.

(iii) The population is growing much faster than it is self-restricting.

Under these assumptions, it is straightforwards to extend the results of the main paper
to the case where m and r follow a distribution over the population and to show that
the expected population size n(t) of such a population would follow the growth model

d

dt
n(t) = (λ− E [µ(R,M, λ)])n(t), where (4)

E [µ(R,M, λ)] =

∫
m

∫
r
µ(r,m, λ)pR,M(r,m)drdm, and

µ(r,m, λ) = E [τS]−1 =
NS

−pQSDB−11
= −γ1NS. (5)

This implies that the population self restriction rate can simply be obtained by aver-
aging µ(r,m, λ) over the population distribution pR,M(r,m) of enzyme activities. Simi-
larly, we can calculate a population phage escape probability by averaging pV(r,m) over
pR,M(r,m) and ask how these quantities change when the variability in enzyme activities
between cells increases. For µ(r,m, λ), we can understand this as imposing the distri-
bution pR,M(r,m) onto Figure 3b in the main paper and averaging the displayed values
over this distribution. More or less independently of the precise shape of pR,M(r,m), we
find that increasing the marginal variances of pR,M(r,m) increases both the population
self-restriction rate and phage escape probability, but that the increase in self restriction
is small as long as the mean activity of M is large compared to its variance and the
growth rate λ while the increase in phage escape probability is small if the distribution
pR,M(r,m) is such that the enzyme activities are positively correlated.

With this established, we can return to the conditions (i)-(iii) under which these results
are valid and ask what violation of the assumptions would imply for growth of the pop-
ulation. Condition (i) allows us to calculate the survival time of each cell with fixed
values of r and m using Eq.(4) in the main paper. This condition is necessary because
random fluctuations in time in r and m within a cell would affect the waiting time dis-
tribution until self-restriction and the detailed mechanisms governing these fluctuations
would have to be known. One exception to this is when r and m fluctuate much faster
than the typical time to self-restriction. In this case one could make use of time scale
separation arguments [5] and replace r and m by their expectations because fast fluctu-
ations simply average over all possible values.

Conditions (ii) and (iii) ensure that the distribution of r and m in the population remains
approximately constant in time despite the fact that cells with different values of r and
m survive for different times. It is interesting, and also useful for clarification, to study
how the population would grow if these conditions are violated. It is easy to see that if
condition (ii) is violated, for instance if cells inherit similar values of r and m from their
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Fig D: Study of population growth (λ = 0.017/min) with variability in R and
M . For all results, we chose the distribution pR,M assuming independence of
R and M with both marginals being log-normal distributions with coefficient
of variation 0.3. Red: Growth without variability, i.e. with self-restriction rate
µ(E [R] ,E [M ]). Green: Growth with variability according to assumptions (i)-
(iii), i.e. with self-restriction rate E [µ(R,M)]. Magenta: Stochastic simulation
(mean of 10,000 runs) of a population where new cells get new random values of r
and m. Blue: Stochastic simulation (mean of 10,000 runs) of a population where
new cells inherit almost the same values of r and m from their mothers. (A-C)
Population with very large self-restriction rate (NS = 599, E [M ] = 4.53/min,
E [R] = 36.71/min). (D-F) Population with low self-restriction (NS = 599,
E [M ] = 77.02/min, E [R] = 624.10/min). (A,D) Average population size. (B,E)
Average value of m in the population. (C,F) Average value of r in the population.
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Fig E: Detailed study of the population with large self-restriction rate of Fig-
ure D. Color coding is the same as in Figure D. (A-C) Long-term dynamics.
(D-F) Short term dynamics.

mother cells, then as the population grows large values of m would get enriched in the
population over time. A bit less obvious, yet nevertheless true, is that in populations
that self-restrict approximately as fast as they grow, m would still get enriched over
time even if new cells get entirely new random values of r and m. This is because cells
are still “selectively killed” based on their values of r and m. This induces a bias to
large values of m and small values of r which is counteracted by the birth of new cells
with random values of r and m, equivalently to the biased methylation configuration
distributions discussed in Figure 3a in the main paper. Consequently, there should exist
a quasi stationary distribution to which the values of r and m in a growing population
converge.

To investigate conditions (ii) and (iii) in detail, we performed a numerical study and
implemented a stochastic simulation algorithm that can be used to simulate population
growth when (ii) and (iii) are violated and allows for a freely tunable distribution pR,M

according to which new values of r and m are assigned to newly born cells. This dis-
tribution can be adjusted to incorporate different scenarios, i.e. it could be chosen such
that new cells receive random values of r and m or such that they can only obtain values
of r and m that were already present in the population (inheritance of the values from
the mother cell). Figure D and Figure E show simulation results for different scenar-
ios and different parameter values. First, we investigated a population that is barely
growing because the self-restriction rate is almost as large as the growth rate (Figure D,
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panels (A)-(C)). In particular, we chose λ = 0.017/min, NS = 599, E [M ] = 4.53/min,
E [R] = 36.71/min and the distribution pR,M assuming independence of R and M with
both marginals being log-normal distributions with coefficient of variation 0.3. The red
line shows the expected population size without variability in enzyme activities, i.e.
when the self-restriction rate is µ(E [R] ,E [M ]) = 0.0169/min. With variability in R
and M , the population self-restriction rate becomes E [µ(R,M)] ≈ 0.0183/min under
assumptions (i)-(iii) and the expected population shrinks according to the green line.
Blue and magenta show the results of 10, 000 runs of the stochastic simulation algorithm
where we assumed that either new cells obtain completely randomized values of r and
m according to pR,M (magenta) or new cells inherit similar values from their mothers
(blue). The simulation results show that initially the population size shrinks with the
same slope as the green line but over time cells with lower self-restriction rates become
enriched in the population and growth exceeds even the growth rate of the noise free
population. A close-up view of the early dynamics is provided in Figure E (panel D). It
follows that under these assumptions variability in enzyme levels leads to initially smaller
growth rates but eventually allows the population to grow faster. Figure E (panels A-C)
shows the long-term dynamics of the population where new cells obtain completely ran-
domized values of r and m according to pR,M. It can be seen that in this scenario the
means of R and M in the population converge to constant values, i.e. the population
eventually achieves a constant growth rate. Panels (D-F) in Figure D provide the same
study as panels (A-C) for a population with a small self-restriction rate (λ = 0.017/min,
NS = 599, E [M ] = 77.02/min, E [R] = 624.1/min, pR,M chosen log-normal as in panels
(A-C)). It can be seen that there are almost no differences between all the growth models
in this case.

S.4 Bacteria-phage ecology

In this section, we study alternative ecological scenarios and prove the results in Table
1 in the main paper. While a comprehensive investigation of all plausible ecological
scenarios is out of scope of this paper, we do want to stress that the framework for
quantifying the cost of immunity that we developed in this paper provides a general and
easy to evaluate functional relationship between the single cell details of RM-systems
and a population level growth cost. It is therefore straightforward to connect this frame-
work to any standard model [6, 7, 8, 9] of phage ecology and to study how the cost
of immunity might affect bacteria-phage dynamics. In this paper, we limit ourselves
to studying the consequences of the different efficiency criteria for bacteria colonizing
phage dominated environments that are listed in the main paper. Furthermore, we pro-
vide simulation results for two simple models, tracking either only bacterial population
growth or the ecological dynamics of methylated and non-methylated phages interacting
with a bacterial population comprised of cells with and cells without RM-systems.
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S.4.1 A minimal model of bacterial population dynamics under constant
phage load

To gain some first insights into the dynamics of a bacterial population, n(t), under con-
stant phage load, v, we consider a simplistic model that combines bacterial growth and
reduction of the population size through phage infections in a single ordinary differential
equation:

dn(t)

dt
= λe(r,m, k, λ) · n(t)− ρv

l
pV(r,m, k) · n(t)2. (6)

The first term on the right-hand side describes the growth of the population at an
effective rate of λe(r,m, k, λ) and already accounts for self-restriction as detailed in
the main paper. The second term accounts for phage escape events. Here, v is the
(unit-free) size of the phage population which we take to be a constant parameter of the
environment; phages enter bacterial cells at a rate proportional to vn(t), as prescribed by
mass-action kinetics, with a proportionality constant given by the phage adsorption rate,
ρ. The rate of successful infections is then given by ρvpV(r,m, k)n(t). We assume that
each successful infection event wipes out a fraction, 0 < 1

l < 1, of the total population
(i.e., on average, n(t)/l bacteria die following phage escape), yielding the full Eq (6).
For simplicity, we assume all infections to be lytic and do not consider the possibility of
the phage to lysogenize the host bacteria.
In this minimal model, two key quantities summarize the fate of bacterial populations in
the presence of bacteriophages: λe quantifies the short-term growth rate before rare but
potentially catastrophic phage escape events are likely to occur, while the long-term cost
of phage escape can be quantified through the steady state population size to which the
population can maximally grow for given v and a given configuration of the RM-system
(see Figure F, panel (a)). It can be shown that the one biologically-relevant fixed point
of the growth dynamics that represents the steady-state bacterial population size is given
by

ns(r,m, k, λ) :=
n(t→∞)

l
=
λe(r,m, k, λ)

ρvpV(r,m, k)
, (7)

where division by l in the definition of ns(r,m, k, λ) is incorporated here to point out
that the steady state of this model is the same as the expression for the “expected
growth until phage escape” that we found in Table 1 in the main paper up to a constant
that does not depend in any way on the single-cell parameters r, m, and the number
of concurrently active RM-systems, k. We can conclude that model Eq.(6) suggests to
measure bacterial performance in the same way as scenario (i) in the main paper, and
that analyzing trade-offs according to this model would lead to the same results as the
main paper but additionally allows to interpret points on the provided Pareto fronts as
possible trajectories of bacterial growth dynamics. To illustrate this, Figure F, panel
(b), shows growth curves in which λe is fixed to half the base growth rate λ and the
RM-systems are optimized to maximize ns(r,m, k, λ) given this λe for different number
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of concurrently active RM-systems, k. It can be seen that kopt = 2 is the optimal number
of RM-systems to grow at the this rate λe.
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Fig F: Bacterial growth for a minimal ecological model. Parameters were as-
sumed to be NS = 599, NV = 5, and λ = 0.017 min−1 in line with the main paper
and the strain used in [10] carrying the EcoRI system. Furthermore we fixed
c = 10−5 and l/ρv = 1 min. (a) Two possible growth curves, Eq (6), for bacteria
with a single RM-system and different enzyme activities (in min−1). (b) Growth
curves leading to the maximally possible steady state values at fixed effective
growth rate, λe = 0.5λ = 8.5 · 10−3 min−1, for different k show that intermediate
values of k (here, kopt = 2) optimize the steady-state population size.

S.4.2 A coupled model of bacteria-phage ecology

To obtain a plausible model of the coupled ecological dynamics of phages interacting
with bacteria carrying RM-systems, we start from the model in reference [6] where
Campbell considered a simple phage predator model in a chemostat. In particular,
Campbell’s model comprises the phage concentration v(t) and the bacterial concentration
n(t) evolving according to the following equations:

dn(t)

dt
= λn(t)

(
1− n(t)

L

)
− ρv(t)n(t)− an(t)

dv(t)

dt
= ρN [n(t)v(t)]− ρn(t)v(t)− kIv(t)− av(t), (8)

where a is the flow rate of the chemostat, ρ is the phage adsorption rate, kI the rate
of spontaneous phage inactivation, N the number of phages that are produced when
a bacterium is infected. The growth law is assumed to be logistic with growth rate λ
and maximal level L. Note that to be in line with Campbell’s model, n(t) and v(t) are
defined as concentrations in this section while elsewhere in the paper population sizes
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are generally treated as unit-free quantities. Consequently, also the parameters in this
section have different units than in the rest of the paper. Furthermore, we point out
that the original formulation of Campbell’s model included a delay explicitly modeling
the time that it takes from infection of a cell to lysis and the release of new phages.
However, using such a delay in a chemostat model would require one to also take into
account that some infected cells are washed out of the chemostat before they are lysed
and release phage [7]. To keep our models easily understandable for readers not familiar
with this literature, we have decided to omit the delay in our simulations.
Eq.(8) captures the dynamics of phages interacting with bacteria that do not have a
RM-system and has the property that, depending on the model parameters, the phage
either dies out when it grows too slowly compared to the flow rate and the rate of phage
inactivation or that it grows sufficiently fast and keeps the bacteria at a very low level
[6]. To expand this model with bacteria that contain RM-systems, we need to add (at
least) two additional species to it: bacteria that have RM-systems nr(t) and phages vr(t)
whose restrictions sites are already methylated because they have been produced as the
result of a phage escape event on RM+-bacteria. If methylated or normal phages infect
bacteria that do not have a RM-system, the newly produced phages are unmethylated
because the methyl-transferase is not present in the cell in which the new phages are
produced. Overall, our expanded model is comprised of the following equations:

dn(t)

dt
= λn(t)

(
1− n(t) + nr(t)

L

)
− ρn(t) (v(t) + vr(t))− an(t)

dnr(t)

dt
= λenr(t)

(
1− n(t) + nr(t)

L

)
− ρnr(t) (pV v(t) + vr(t))− anr(t)

dv(t)

dt
= ρNn(t) (v(t) + vr(t))− ρv(t) (n(t) + nr(t))− kIv(t)− av(t)

dvr(t)

dt
= ρNnr(t) (vr(t) + pV v(t))− ρvr(t) (nr(t) + n(t))− kIvr(t)− avr(t), (9)

where all parameters have the same meaning as in Campbell’s model and pV = pV (r,m, k)
and λe = λe(r,m, k) are phage escape probability and effective population growth rate
of RM+ bacteria as defined in the main paper. For the sake of simplicity, we assume
that bacteria have either no RM-system or that they have all k RM-systems (or al-
ternatively that k = 1) since otherwise additional bacterial and phage species would
need to be tracked in the model. For a first simulation of this model, we assumed that
λ = 0.017min−1, ρ = 0.001ml/min, kI = 0.0001min−1, a = 0.005min−1, L = 1/ml,
N = 100, and that the RM-systems are not very costly but also not very efficient with
pV = 10−3 and λe = 0.016min−1. Figure G shows short and long-term dynamics of the
system starting from an initial condition where bacterial and phage concentrations are
low and methylated phages are completely absent. It can be seen that initially, due to
the low phage concentration, both RM− and RM+ bacteria grow almost unaffected by
phages. Phages, on the other hand, do not grow but are maintained in the environment
due to a small number of infections on RM− bacteria that approximately balance the
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flow rate of the chemostat and phage inactivation. At some point, however, when the
population of RM− bacteria has grown to a sufficiently large size, the production of new
phages surpasses the loss of phages. This leads to an increasing phage population and
more infections, and consequently causes the concentration of RM− bacteria to drop
quickly. With less RM− bacteria to prey upon also the phage population plummets
again. However, the increased number of phages leads to phage escape events on RM+

bacteria and the production of methylated phages. These methylated phages then start
to prey upon the RM+ bacteria leading to prey-predator damped oscillatory dynam-
ics between these two populations. On a long time horizon the system equilibrates to a
steady state where the environment contains mostly methylated phages while both RM−

and RM+ bacteria are maintained at low levels (Figure G, panel b).
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Fig G: Bacteria-phage ecological dynamics for inefficient RM-systems. Phage
escape and effective growth rate have been chosen as pV = 10−3 and λe =
0.016min−1. The initial condition for the system was chosen as n(0) = 0.011/ml,
nr(0) = 0.011/ml, v(0) = 0.011/ml, and vr(0) = 0. (a) Short-term dynamics.
(b) Long-term dynamics.

To see whether more efficient RM-systems allow bacteria to defend themselves more
successfully, we performed another simulation of the model assuming pV = 10−10 and
λe = 0.016min−1. Figure H shows that the dynamics of the system remain overall similar
with the difference that the reduced phage escape probability delays the time when
the population of methylated phages starts to increase. It does not, however, prevent
methylated phages from eventually taking over and the steady state population sizes of
bacteria remain at equally low levels as before. Decreasing the phage escape probability
even further does not change anything about this result. To back up this result, assuming
the same RM-system characteristics as in the main paper (NS = 599, NV = 5, c =
3.744 · 10−7) and k = 1, we calculated effective population growth rate λe(r,m, k) and
phage escape probability pV (r,m, k) for 1.25 million parameter combinations of r and
m (on a 2-dimensional grid up to r = 50000min−1 and m = 200min−1) according to
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the equations provided in the main paper. For each parameter combination, we used a
numerical solver to approximately calculate the steady state of the model in Eq.(9) and
found that in all cases the steady state concentration of RM+ bacteria remains below
0.11/ml, that is below approximately 10% of the maximally possible concentration L
in the logistic growth model. We conclude that, at least according to the considered
deterministic model in which phages cannot go completely extinct, RM-systems can
only provide transient resistance against phages and that the efficiency of RM-systems
would have to be quantified as the duration of this transient resistance, similar to the
scenarios studied in Table 1 in the main paper.
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Fig H: Bacteria-phage ecological dynamics for efficient RM-systems. Phage
escape and effective growth rate have been chosen as pV = 10−10 and λe =
0.016min−1. The initial condition for the system was chosen as n(0) = 0.011/ml,
nr(0) = 0.011/ml, v(0) = 0.011/ml, and vr(0) = 0. (a) Short-term dynamics.
(b) Long-term dynamics.

S.4.3 Proof of the results in Table 1 of the main paper

Theorem. Consider a bacterial population n(t) of initial size n(0) = n0 growing expo-
nentially at rate λe according to n(t) = eλetn0 in a well-stirred environment containing
a number of phages v that remains constant at all times. Let cmut be the rate of the
occurrence of immunity conferring mutations per cell and unit time, ρv := ρ ·v ·pV where
ρ is the phage adsorption rate and pV the phage escape probability. If we denote by τp
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the time of the first phage escape event, it holds that

(a) E[n(τp)] =


n0 + λe

ρv
if λe > 0

n0 +
λe

(
1−e

n0ρv
λe

)
ρv

if λe < 0.

(b) E
[∫ τp

0
cmutn(t)dt

]
=

{
cmut
ρv

if λe > 0
cmut
ρv

+ cmute
n0ρv
λe

(
n0 − 1

ρv

)
if λe < 0.

Proof:
In a well-stirred environment with constant number of phages v, the rate of phages in-
fecting bacteria is given by ρ · v · n(t) according to mass action kinetics. The rate of
successful infections is then δ(t) := ρvn(t) and the occurrence of successful infections
can be regarded as firings of a non-homogeneous Poisson process with rate δ(t). It fol-
lows from the theory of non-homogeneous Poisson processes that the probability density
function fτp of τp is given by

fτp(t) = δ(t)e−η(t), where

η(t) =

∫ t

0
δ(s)ds =

∫ t

0
ρvn(s)ds = ρv

∫ t

0
eλesn0ds =

ρvn0
λe

(
eλet − 1

)
.

It follows that the density function can be expressed as

fτp(t) = ρvn0 exp

{
ρvn0
λe

+ λet−
ρvn0
λe

eλet
}
. (10)

To prove (a), writing out the expectation and plugging in Eq. (10) yields

E [n(τp)] =

∫ ∞
0

n(t)fτp(t)dt

=

∫ ∞
0

eλetn0ρvn0 exp

{
ρvn0
λe

+ λet−
ρvn0
λe

eλet
}
dt

= n20ρv

∫ ∞
0

exp

{
ρvn0
λe

+ 2λet−
ρvn0
λe

eλet
}
dt

= n20ρv
1

n20ρ
2
v

{
λe + n0ρv − e

n0ρv
λe lim

t→∞
g(t)

}
where

g(t) = exp

{
−n0ρve

λet

λe

}(
λe + n0ρve

λet
)
.

Using n0 > 0 and ρv > 0, it follows that

lim
t→∞

g(t) =

{
0 if λe > 0

λe if λe < 0,
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and thus

E [n(τp)] =
1

ρv

(
λe + n0ρv − e

n0ρv
λe λe1{λe<0}

)

=


n0 + λe

ρv
if λe > 0

n0 +
λe

(
1−e

n0ρv
λe

)
ρv

if λe < 0,

which concludes the proof of (a).

To prove (b), writing out the expectation and plugging in Eq. (10) yields

E
[∫ τp

0
n(t)dt

]
=

∫ ∞
0

{∫ s

0
n(t)dt

}
fτp(s)ds

=

∫ ∞
0

{∫ s

0
eλetn0dt

}
ρvn0 exp

{
ρvn0
λe

+ λes−
ρvn0
λe

eλes
}
ds

= n20ρv

∫ ∞
0

eλes − 1

λe
exp

{
ρvn0
λe

+ λes−
ρvn0
λe

eλes
}
ds

=
n20ρv
λe

∫ ∞
0

{
exp

{
ρvn0
λe

+ 2λet−
ρvn0
λe

eλet
}
− exp

{
ρvn0
λe

+ λet−
ρvn0
λe

eλet
}}

ds

=
n20ρv
λe

1

n20ρ
2
v

{
λe + n0ρv − e

n0ρv
λe lim

t→∞
g(t)

}
+
n20ρv
λe

1

n0ρv

{
lim
t→∞

h(t)− 1
}
, where

h(t) = exp

{
n0ρv − n0ρveλet

λe

}
.

Using n0 > 0 and ρv > 0, it follows that

lim
t→∞

h(t) =

{
0 if λe > 0

e
n0ρv
λe if λe < 0,

,

and thus

E
[∫ τp

0
n(t)dt

]
=

1

λeρv

(
λe + n0ρv − e

n0ρv
λe λe1{λe<0}

)
+
n0
λe
e
n0ρv
λe 1{λe<0} −

n0
λe

=

{
1
ρv

if λe > 0
1
ρv

+ e
n0ρv
λe

(
n0 − 1

ρv

)
if λe < 0.

which concludes the proof of (b) since cmut is just a multiplicative constant.

The theorem proves the results for the efficiency criteria (i) and (iii) in Table 1 of the
main paper. To see why P (τmut < τp) = cmut

cmut+ρv
for criterion (ii), we note that mu-

tation events can be represented firings of an inhomogenous Poisson processes with a
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rate cmutn(t) that has the same dependence on the population size as the rate ρvn(t)
of successful infection events. As a consequence, the probability that mutation happens
before phage escape is simply the same as the probability that a homogenous Poisson
process with rate cmut fires before another homogenous Poisson process with rate ρv,
i.e., equal to cmut

cmut+ρv
.

Corollary 1. If the effective growth rate of the population is positive, the expected
growth of the bacterial population until phage escape, the probability that mutation
happens before phage escape, and the expected integrated population mutation rate un-
til phage escape are all independent of the initial size of the population. The probability
that mutation happens before phage escape and the population mutation rate are fur-
thermore independent of the bacterial growth rate.

Corollary 2. For all three bacterial performance criteria in Table 1 in the main paper,
the optimal bacterial defense strategy is constant in time.

Proof: This follows directly from the result that the performance criteria are indepen-
dent of the initial population size. In particular, if a population is growing and phage
escape has not happened up to a certain time t1, then the population size will have
changed from n(0) to n(t1). If the efficiency of immunity as quantified by the three
bacterial performance criteria in Table 1 in the main paper would depend on popula-
tion size, then the optimal bacterial defense strategy would need to be adjusted for the
new population size n(t1). Given that this is not the case, however, we find that there
exist a single best defense strategy that does not change when the population is growing.

Since Corollary 2 has interesting biological implications, we will in the following discuss
further for case (i) in Table 1 in the main paper how the expected amount by which the
bacterial population can grow before phage escape, E[n(τp)]− n0 becomes independent
of the initial population size n0. In fact, as we will demonstrate below one can also show
the stronger results that g(τp) := n(τp) − n0 follows an exponential distribution with
parameter ρv

λe
that is independent of n0, despite the seemingly explicit dependence on

n0 and the fact that the probability density function of τp does depend on n0. To see
this, let us first denote the probability density function of g(τp) by fg(τp)(n), where we
have chosen n as the running variable of the density to indicate that this is a probability
density over population sizes. fg(τp)(n) can be obtained from the probability density
function of τp by exploiting the change of variables formula

fg(τp)(n) =
d

dn

(
g−1(n)

)
· fτp

(
g−1(n)

)
(11)

where g−1 is the inverse function of g. Since g(t) = n(t) − n0 = eλetn0 − n0 we obtain
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its inverse function as

g−1(n) =
1

λe
log

(
n+ n0
n0

)
(12)

To evaluate Eq.(11), we note that

d

dn

(
g−1(n)

)
=

1

λe(n+ n0)
(13)

while the second term can be obtained by plugging g−1(n) into Eq.(10):

fτp
(
g−1(n)

)
= ρvn0 exp

{
ρvn0
λe

(
1− n+ n0

n0

)
+ log

(
n+ n0
n0

)}
= ρvn0

n+ n0
n0

exp

{
ρv
λe

(n0 − (n+ n0))

}
= ρv(n+ n0) exp

{
−ρv
λe
n

}
(14)

Plugging Eq.(13) and Eq.(14) into Eq.(11) gives

fg(τp)(n) =
ρv
λe
e−

ρv
λe
n, (15)

which can be recognized as the probability density function of an exponential distribu-
tion with parameter ρv

λe
and hence mean λe

ρv
, as already derived earlier. We can conclude

that the entire probability distribution of g(τp) = n(τp)−n0 is independent of n0. Corre-
spondingly, for any bacterial performance measure that is derived from this probability
distribution, such as the mean in criteria (i) in Table 1 in the main paper, one will obtain
the result that the optimal bacterial defense strategy against phages does not depend
on the bacterial population size.
To visualize this mathematical result graphically, we fixed parameters ρv = 1min−1, and
λe = 0.016min−1 and pV = 1.6·10−5 in line with experimental results in [10] obtained for
the EcoRI restriction modification system and calculated growth curves and all relevant
probability densities using different values for initial population sizes. Figure I, panel
(a), shows how two different initial conditions (n0 = 10 and n0 = 100) yield populations
that require different amounts of time to grow to large sizes, but also how phages tend
to escape faster in the case where the population starts at n0 = 100. Panel (b) then
visualizes how these two effects cancel each other out and how the probability distribution
of the population increase until phage is the same in both cases.

S.4.4 Pareto optimality for efficiency criteria (ii) and (iii) in Table 1 of the
main paper.

In this section, we investigate how the Pareto optimal fronts in Figure 4 of the main paper
change when efficiency criteria (ii) or (iii) in Table 1 of the main paper are considered
instead of efficiency criterion (i). Accordingly, using the same parameters as in panels
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Fig I: Population growth until phage escape is independent of population size.
Parameters have been chosen as ρv = 1min−1, and λe = 0.016min−1 and pV =
1.6 · 10−5. (a) Exponential growth curves starting from initial population sizes
n0 = 10 (blue) and n0 = 100 (red). The corresponding waiting time distributions
on phage escape show that phage escape is likely to occur very early in the case
where the population starts at n0 = 100 (orange) while in the case where the
population starts at n0 = 10 (light blue) the population reaches large sizes much
later but phage escape also happens later. (b) The two opposing effects visualized
in (a) cancel each other such that the probability distribution of the population
increase until phage escape, n(τp) − n0 becomes independent of n0 and given by
an exponential distribution with parameter ρv

λe
.

c and d in Figure 4 of the main paper, and additionally assuming that the per cell
mutation rate is given by cmut = 10−8min−1, we calculated Pareto optimal fronts between
λe(r,m, k) and P (τmut < τp) for criterion (ii) and E

[∫ τp
0 cmutn(t)dt

]
for criterion (iii).

The results are displayed in Figure J. The results for efficiency criterion (iii) are overall
relatively similar to the results with criterion (i) of the main paper. This is because
the Pareto fronts are mostly shaped by the functional dependency of the criteria on the
phage escape probability, which is the same in the two cases. In criterion (ii), on the
other hand, the bacterial performance is quantified as P (τmut < τp) = cmut

cmut+ρv
and the

dependence on the phage escape probability is therefore more complex than just plain
division through pV(r,m, k) as was the case for the two other criteria. For criterion (ii),
we find that the main question is whether the rate of mutation cmut is a larger or smaller
than ρv = ρ · v · pv(r,m, k). If cmut is larger than ρv, the probability that mutation
happens before phage escape is typically close to one. If cmut is smaller the probability
is typically close to zero. There also exists an intermediate regime in which cmut and ρv
are about the same size, or at least about the same order of magnitude, such that the
probability for mutation to happen before phage escape is substantial but smaller than
one. With the exception of the case where cells have only a single RM-system (k = 1),
however, this regime is relatively small. Consequently, for any given mutation rate cmut
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there exists a minimal RM-system protection from phages that is necessary to ensure
that P (τmut < τp) ≈ 1 and a tuning of the RM-system(s) that realizes just this minimal
protection while ensuring that the effective growth rate λe is not reduced any more than
is necessary. This optimal tuning is, however, a function of the environment given that
ρv = ρ · v · pV(r,m, k) depends on the number of phages v. For the parameter values
considered here, we find that k = 3 RM-systems can ensure nearly full protection with
the smallest reduction in effective growth rate (λopte ≈ 0.015min−1, see black cross in
Figure J, panel (a)).
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Fig J: Optimal tradeoff in the presence of phages. For both panels, we set NS =
599, NV = 5, λ = 0.017min−1, c = 3.744 · 10−7, cmut = 10−8min−1, and ρ ·
v = 1min−1. (a) Pareto optimal fronts for efficiency criterion (ii). The black
cross marks the maximal possible effective growth rate that allows near perfect
protection from phages. (b) Pareto optimal fronts for efficiency criterion (iii).

S.4.5 Optimal regulation of enzyme expression levels

To supplement the analysis in the main paper, we investigated in more detail how the
optimal enzyme activities change along the Pareto fronts in Figure 4b in the main paper,
that is, how different trade-offs between λe and ns are realized for different numbers of
systems k. The results (Figure K) suggest that any Pareto-optimal enzyme activities
mk,opt and rk,opt are necessarily such that the growth cost λ − λe is allocated in equal
parts to self-restriction and metabolic cost. A consequence is that both the optimal total
combined enzyme activity and the optimal total self-restriction rate are fully determined
by the specific trade-off and do not depend on k, i.e. that

k ·c·(mk,opt+rk,opt) = c·(m1,opt+r1,opt) = µ(r1,opt,m1,opt) = k ·µ(rk,opt,mk,opt) =
λ− λe

2
.
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Phrased differently, this result can also be understood as follows: for every trade-off, the
metabolic cost parameter c fixes the total allowed enzyme activity to λ−λe

2c . This enzyme
activity then needs to be optimally allocated to restriction and modification taking into
account the number of RM -systems k.
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Fig K: Detailed study of optimal enzyme activities. Optimal enzyme activities,
ropt and mopt (in min−1), on Pareto fronts for different k, as a function of ef-
fective growth rate, λe(r,m, k). (a,b) Same as Figure 4c in the main paper.
Additionally, the case k = 5 is shown (yellow) and it is outlined which system
is optimal at which effective growth rate (thick black). (c,d) Same as panel a
and b but showing the total enzyme activities ropt · k and mopt · k. (e) Optimal
total combined activity (mopt + ropt) · k of restriction and modification enzymes
as a function of λe(r,m, k). (f) Logarithm of optimal phage escape probabilities
pV (r,m, k) as a function of λe(r,m, k).
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